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TRANSONIC SIMITIARITY RUIES FOR LIFTING WINGS

By Keith C. Harder
SUMMARY

Similarity rules for the transonic flow about 1lifting wings are
derived by considering the change in the flow field due to angle of
attack as a small perturbation to the nonlifting flow field. This
approach has the advantage that the effects of angle of attack and air-
foll geometry are partially separated.

It is found that the 1ift coefficient is proportional to the angle
of attack as in other speed ranges. Other results are that the drag
due to 1lift is proportional to the square of the 1lift coefficient as in
other speed ranges and that the expression for the ratio of 1ift to drag
is very similar to that obtained at supersonic speeds. It is found that
the maximum value of the lift-to-drag ratio is approximately lnversely
proportional to the first power of the wing thickness ratlio for cases
in which the skin-friction drag is negligible compared with the pres-
sure drag. For cases where the angle of attack is large compared with
the thickness ratio, the 1lift coefficient is proportional to the angle
of attack to the two-thirds power.

Since the effects of angle of attack and wing geometry are partially
separated, the present form of the similarity rules is useful for corre-
lation work. Experimental data indicate that such a correlation will
be possible for a lift-coefficient range extending beyond the 1lift coef-
ficient for maximum lift-to-drag ratio. Thus, many interesting results
may be presented in terms of the similarity rules for low 1ift coefficients.

It is shown that the transonic similarity rules are valid at subsonic
speeds but are more complicated in that rsnge than the well-known rules of
Prandtl-Glauert.

INTRODUCTION

A large amount of data on the transonic characteristics of wings
have already been accumuleted and more informastion may be expected from
the research programs in progress and from those which are projected.
As is well-known, the transonic characteristics of wings depend upon
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the Mach number, thickness ratio, aspect ratio, and sweep, and to a lesser
extent upon the airfoil family and taper ratio. One of the problems which
the aerodynamist now faces is the correlation of these data in such form
that the characteristics of an arbitrary wing may be estimated repidly
and with reasonable accuracy. Since it is convenient to use only two
independent variables at a time, the task of correlating even straight-
wing data is formidable unless there exists a guide to a particular com-
bination of variables which will permit a more compact representation

of the data. Such a guide is now available as the result of recent work
in which the potentialities of the so-called transonic similarity rules
have been explored more fully.

Similarity rules for two-dimensionasl transonic flows have been given
by Von Kérmin (ref. 1) and Kaplan (ref. 2). Although the results of
references 1 and 2 provided the background and stimulus for the work to
follow, the two-dimensional rules which were derived in these.references
were not of use for finite wings since aspect ratio has a strong effect
at transonic speeds. Later, the similarity rules for finite wings were
given by Spreiter (ref. 3). None of the sets of rules of references 1
to 3 1s very convenient for lifting wings, however, since they require
that the ratio of the angle of attack to the airfoil thickness ratio
remain constant.

The similarity rules of the present paper are derived by considering
the change in the flow field due to angle of attack as a small perturba-
tion to the nonlifting flow field. This approach has the advantage that
the effects of angle of attack and airfoil geometry are partially
separated.

SYMBOLS
A aspect ratio
a speed of sound
b wing span
c wing chord
Cpe skin-friction drag coefficient

CDP zero-1ift pressure-drag coefficient
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ACp incremental drag due to 1ift

Cy, 1ift coefficient

Cnm pitching-moment coefficient

Dp(H,X) function describing pressure drag at zero angle of
attack

Dph(H,K) function describing pressure drag at zero angle of

attack due to camber

AD, ADy, ADp  functions describing drag due to angle of attack

AD3 function describing drag due to camber at angle of
attack
g(z,%) wing thickness-distribution function
c
h wing camber
1/3

H=AE7+ 1)Mm2§]/

2

Mo -1

K = 2

E7 s1M 2L 2/3

L(E,K), h(H,K,ﬁ;) 1ift. functions

Lp(H,K) function describing 1ift due to camber
M local Mach number
M(H,K) pitching-moment function

P pressure coefficient E_:_Ba
pUZ/2
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P pressure

S wing area

t wing thickness

u,v,w Cartesian velocity components in the x-, y-, and

z-directions, respectively

U free-stream velocity

X,¥,2 Cartesian coordinates

X aerodynamic-center function

Xac location of aerodynamic center measﬁred rearward from
leading edge

L/D 1lift-to-drag ratio

(L/D) pox meximum lift-to-drag ratio

a angle of attack

B=\M" -1

v4 ratio of specific heats

ts) flow-deflection angle for Prandtl-Meyer flow

P density

) velocity potential

4] perturbation velocity potential

Subscript:

) undisturbed stream

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

The equation for the velocity potential ¢ governing the irrotational
flow of a compressible fluid is
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2uv 2-1_211‘7' 2vw - (l)
a

where the velocity components u, v, and Ww in the X-, y-, and
z-directions (x is in the direction of the free stream and y is
along the span) are given by

u =0, 7
v =0y . (2)
W=¢z

~7

and a, the local speed of sound, is given by

2 - 1/u2 2 we
.3_2.=l—72 u2+V2+ 2_Mw2 (3)
o 8o 8y 8

where a, 1is the velocity of sound corresponding to the free-stream
velocity U and M, is the stream Mach number U/a..

Equation (1) for the velocity potential is far too complicated to
afford an Insight into the properties of flow fields near Mach number 1.
It is therefore important to replace equation (1) by a simpler approxi-
mate equation which still retains the essentiel features of transonic
flow.

First, equation (1) for ¢ is replaced by an exact equation for
a disturbance velocity potential ¢ defined by

o =U(x + @)
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Then

¢xx[ -M2 - (y+ 1M 2P, - L ; Lu2g2 - 1_;_1 Mw2(¢y2 N ¢ze):l N

— —

1 -1
¢y‘y 1 - 7; Moo2¢y2 -7 > Mm2(2¢x + ¢x2 + Sﬂz‘e?J +

+ 1 -1 2 2
Bz E- - l?— Muo2¢22 - 7—‘2_Mm2(2¢x + B+ ¢y ) -

2M 2oy (By + Buby) - Py (B + Buby) - M2y Byp, = O (%)

If § and its derivatives are assumed to be small compared with 1,
the well-known Prandtl-Glauvert differentisl equation valid at subsonic
speeds is obtained by retaining only the first term from each of the
first three lines, However, for stream Mach numbers near 1, the term

(7 + l)Mf¢x may be as large or larger than 1 - M¢? and both of these

terms must be retained at transonic speeds. The resulting differential
equation is

[E - Ma? - (7 + l)Mu?¢%]¢xx + ¢yy + ¢zz =0 (5)

At first glance it may appear that the term involving @yx i1s of
higher order than those involving ¢yy or ¢zz since the coefficient

of the ¢xx term is small compared with 1. However, in general, ¢xx
is much greater than ¢xy’ Bz -¢yz’ ¢yy’ and @,, for transonic

flows. For example, the linearized theory of Prandtl-Glauert indicates
that for stream Mach numbers near 1, a small disturbance is propagated
practically unchanged to infinity in the y-~ and z-directions and is
restricted to a small region in the x-direction.

Equation (5) is slightly more complicated than that given in refer-
ences 1 to 3. This added complication is a result of the disturbance
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velocities being referred to the free-stream velocity U rather than
to the speed of sound corresponding to a local Mach number of 1 as in
references 1 to 3. However, the added complication in the differential
equation is compensated by simpler boundary conditions, since all dis-
turbance velocities are required to vanish upstream at infinity.

The inclusion of the term @ @ . in equation (5) is necessary at

transonic speeds, For subsonic stream Mach numbers not near 1, this
term should be neglected compared with 1 - M® to give the well-known
Prandtl-Glauert differential equation. Equation (5) is therefore not
incorrect at subsonic speeds (where the term . §.f ., becomes second

order) although in that range it is unnecessarily complicated. Thus,
the similarity rules based upon equation (5) will be valid at subsonic
speeds but the simpler Prandtl-Glauert similarity rules are to be
preferred.

The appropriate boundary conditions at upstream infinity for a thin
1ifting wing are:

¢x=¢y=¢z=o (6)

It is well-known that for thin bodies the effects of thickness and angle
of attack may be separated in the boundary conditions to the first order.
For symmetrical airfoils at small angles of attack, the boundary condi-
tions on the body may be written

(¢Z)z=0 =% ié- -é?f/:)— g(%{’%) ta (7)

where the shape of the wing is given by
z = i% g(E,_X) +Xa - (8)

where c¢ 1is the wing chord, b, the span, and t/c, the thickness ratio.

Equation (8) defining the wing can be written in the form

. - gEg(g,%') Pt (9)
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and, if the parameter 5— is kept constant, the family of airfoils
(&4

depends only upon t/c. This is a requirement of the similarity rules
presented in references 1 to 3. Some remarks concerning this require-
ment are given in appendix A.

The following development shows that in some cases the effects of
airfoil thickness ratio and angle of attack may be partially separated

and that for these cases the parameter t#‘/-‘— need not be kept constant.
C

Equation (7) for the boundary conditions suggests a solution of the
form .

6§ s (10

where ¢t is the thickness solution satisfying the boundary condition

t 0 Xy ’
(") e = %2 3(x/c) g(c’b) (12)
and ¢°‘ is the angle-of-attack solution satisfying the boundary condition

(¢az)z=0 =< (12)

Combining equations (5) and (10) gives
{1 - sz - (7 + l)Mngﬁt;l;étn + ¢tyy * ¢tzz} +
{l—Mmg—(7+1)Mm2¢a;'¢axx+¢ayy+¢ézz-

(7 + 1)M‘,f;2(szftxslf"‘XX + ¢txx¢“x)} =0 (13)
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where ¢t is defined as a solution of the equation obtained by setting
the first expression in braces in equation (13) equal to zero and

is defined as a solution of the equation obtained by setting the second
expre;gion in braces in equation (13) equal to zero. Thus the equation
for is

102 - (7 + DM F gy + By + 8, = 0 (14)

and the equation for @* is
1- Mmz - (7 + l)M&2¢§;]¢axx + ¢a&y + ¢azz -

(7 + IR (B B + B ) = O (15)

It may be noted that equation (14) is identical to equation (5).

An important simplification may be made in equation (15) by assuming
that $%, << #5, so0 that the term ¢*,¢* , may be neglected compared

with ¢tx¢akx' That 1s, the angle-of-attack solution is considered to
be s small perturbation to the thickness solution. The resulting equa-

tion for ¢“ is linear with variable coefficients depending upon the
thickness solution @¥:

(- ) - O+ D 2(P % + BB ) + By # By =0 (26)

The assumption made to obtain equation (16) would appear to be valid only
for o< %; however, experimental data for many airfoils of practical

interest indicate that similarity rules based on this equation are valid
for a lift-coefficient range extending beyond Cj for (L/D)p .. Equa-

tion (6) for the boundary conditions upstream at infinity becomes
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¢tx = ¢’°y = ¢’°Z =0
(17)
¢°'x=¢°‘y=¢°‘z=0

and, if the trailing edges are subsonic, the Kutta condition must be
satisfied.

DERIVATION OF SIMILARITY RULES

An attempt will be made to express the solutions of equations (1)
and (16) in the form

gt = Alfl(%,Bly,Clz>

A2y (%5715 Zl) (18)

g = A2f2(§,B2y, sz)
= Azfa(xe,yg,zz) (19)

where t, o, My, and b occur only in the parameters A, By,
and Cp. The factor 1/c is included with x since the wing is in

an unbounded fluid which extends infinitely far in every direction and
hence the flow must be independent of the scale.

Equation (14) is first considered. Inserting equation (18) into
equation (1k) gives -

2
2\Aq 2 Ay
1L -MS)—=7¢ - (y + IMf~—=— £, T + A, B-°r +
( ) c2 txyx) 3 hxplmx 1L Tlygyy

8;0,%¢ =0
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It has been assumed that £, is a function only of x7, ¥y7, and z.
This assumption holds if

c(1 - ng)
A = 272
(7 + 1)M2
# (20)
2
Bl = Cl = __cMi
J

The differential equation then tekes the form

1-f + f + R =0
( lxl) L%y iy 7 Tz

and does not depend explicitly upon A,, B,, or Cj,.

The boundary condition at the surface, equation (11), yields

Alclflzl(xl,yl,o) =42 B(j/c) g(%,%) (21)
from which
Yy = % = Byy
or
By = % (22)
and

A€y = ':';‘ (23)
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It should be noted that the function g(g,%) cannot change if the flows

are to be similar. The geometrical differences between wings are asso-
ciated with differences in their aspect ratio and thickness ratio. For
example, if the function g is to be the same for swept wings, the
perameter A tan A must remain constant, where A 1s the sweep angle
of a constant-percent-chord line. Also, the taper ratios are the same
for similar wings.

Equations (20) and (23) are four equations for the three unknowns
Ay, B3, and Cy. In general, such a set of equations will not be

consistent for arbitrary values of the coefficients. Equations (20)
and (23) will be consistent provided the coefficients satisfy the

M2 -1

E7 + .2 %:] 2/3

tity K 1s one of the similarity parameters and corresponds to the form
first given by Von Kdrmén (ref. 1). From equations (20), (22), and (23)

where K is a constant. The quan-

relation K =

b 2 g] /3 b

= (7 + L)M < must be kept constent and, since < is proportional

to the aspect ratio A for wings of the same chord and shape, the param-
2t 1/3 1

eter H=A|(y + 1M ¢ must also be kept constant.” Equation (21)

for the boundary condition thus becomes

K3/2flzl(x1,yl,0) = SE_ g(xl,yl)
1

Thus, the expression for ¢t mey be written

el z
E (t/lemﬂlh ft@’%’i)
Y +

lSimilarity rules involving the parasmeter (7 + l)M“? were first
formulated by A. Busemann (ref. 4). The factor M2 arose as a con-

sequence of referring the disturbance velocities to the free-stream
velocity rather than to the speed of sound for a local Mach number
of 1 as in references 1 to 3.
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1 2.1
provided H = A[EV + 1)Me? g- /3 and K = Mer are held

E? + 1)M,2 -:;:"2/3

constant. For a sonic stream, K = 0 and the only parameter occurring

1 ]
is H = AE')‘ + l)% /3. Thus a difficulty encountered by Spreiter

2

(ref. 3) who gave the two parameters as

- and A(M2 - 1
NEE
o o]

is eliminated. The difficulty was that there appeared to be some ques-
tion concerning the combination of these two parameters for M, = 1,

because of the possibility of indeterminate forms.

The derivation for the 1lifting case follows an analysis parsasllel
to that for thickness. Inserting equations (18) and (19) into (16)
ylelds .

AA
1 f2 + 12 fl f2 +
X3 TXpXp c3 X1¥) X2

A Ajhp
(x - Mf)c—gfzxeg - (7 + 1)1%,02(%3— £

2 2¢ -
ALBA-T + ASC =0 (24)
2Po 2y2y2 2Lo 22222

which can be rendered independent of A,, "By, and C, 1if

J1-u2

C

and

By = ——— = (25)
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The equation for f, then becomes

1-¢ S £y fo 4+ f b T -0
( lx1)f2x232 Iy 2x5 7 “2ypyp T 22pzp

independent explicitly of A,, B,, and C,. From the boundary
condition (12),

Azczfzzg(xz,yz,O) e e
or
ACH «a
and

A2 « ca = ca (26)

41 - sz Kl/el:(-y + l)Mm2 51/3

Thus, the expression for @*° may be written for « <<-‘£f-

g = = (3,12 (27)
Ki/e[gy + M2 5'173 (c ’ b>

provided H and K are kept constant.

In order to evaluate the forces on the wing, the approximate expres-
sion for the pressure coefficient P « ¢x given by first-order theory

is used. Combining some of the previous results ylelds the following
expression for the pressure coefficient:
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) 15
2/3
o (8/0)?/ Pt(H’K;E,Z’£> N
[(r + 2] 3 e
o XYz
7 P“(H’K’c’b’b) (28)

E? +1M2 L

This result differs from the conception that at transonic speeds the pres-
sure coefficient and hence the 1lift are proportional to (t/c)2/3.

For cases where a >> %, the thickness solution is considered as a

small perturbation to the angle-of-atteck solution. For this case, the

differential equations (14) and (16) for t/c and a are interchanged
to give

2/3

a

o [Ey + 1)M 2

a XYz
1/3 P l(Ha”Ka’c’b’b) +

)

where H* and K* are the parameters H and K with o and t/c
interchanged., Similar flows exist only in the approximastion of small-
disturbance theory which requires that both « and t/c be small.
Thus, the form of the similarity rule for a >> g is applicable only
to very thin airfoils at small angles of attack.

oInN

SOME PHYSTICAL CONSIDERATIONS CONCERNING THE LIFT

OF TWO~-DIMENSIONAL WINGS

If only the terms which influence the 1ift are considered,

2/3 t
P « -(—t—}-cg)T/—3 / g(I{a) for a >> Eo The

for o <« %- and P« «

e — e ——— e e e
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physical reason for this difference is believed to be the following:
Consider the pressure coefficient for Prandtl-Meyer flow due to a

flow deflection 8 as shown in the following sketch for several values
of the stream Mach number:

If the stream is supersonic, both positive and negative values of & are
permitted. An increase in & corresponds to an increase in the local
Mach number M and a decrease in & corresponds to a decrease in local
Mach number. Examination of the sketch illustrates the known result for
Prandtl-Meyer flow that P « & for local Mach numbers much larger than 1.

52/3 g
Ey + 1)Mu§ 1/3

Meyer flow if the local Mach numbers are near 1.

Tt is shown in appendix B that P « (k%) for Prandtl-

Prandtli-Meyer flow is intimately related to the method of character-
istics (two-dimensional flow) which may be used to determine supersonic
flow fields. Consider an airfoil with thickness at zero angle of attack
in a slightly supersonic stream. The flow over the rear part is super-
sonic and, since the stream is supersonic, there must be a Mach line
originating at the surface which does not intersect the sonic line. The
change in the flow field due to a small change (within limits) in the
shape (or slope) of the airfoil downstream of this point may be deter-
mined by the method of characteristics.
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If the flow deflection & for Prandtl-Meyer flow is considered as
the local slope of the airfoil, the change in the pressure coefficient
is proportional to the change in the local slope provided the local Mach
numbers are much larger than 1. Thus, for an airfoil with thickness,
the change in the pressure coefficient is proportional to the change in
the local slope in regions where the local Mach numbers are much larger
than 1. Since a change in slope may be considered to arise from putting
that portion of the airfoil at an angle of attack, the change in the
pressure coefficient is proportional to the change in angle of attack
provided the local Mach numbers are not near 1. This reasoning is based
upon the concepts of Prandtl-Meyer flow which require that the local Mach
numbers be greater than 1. However, the transonic similarity rules con-
tain no restrictions requiring the local Mach numbers to be greater
than 1. Therefore, it is believed that these considerations concerning
the importance of the local Mach numbers are also of physical signifi-
cance when the local Mach numbers are less than 1. This concept has
been used in reference 5 to obtailn a velocity correction formula for
airfoils with a fixed sonic point.

This line of reasoning is applied to the complete airfoil to obtain
the result that the 1lift coefficient is proportionsl to the angle of
attack when there are no large regions of near~sonic flow at the surface.
Analogous reasoning leads to the result that the 1ift coefficient is
proportional to the angle of attack to the two-thirds power times a
function of K* when large regions of near-sonic flow exist at the
surface. An example of an airfoil with large regions of near-sonic
flow at the surface is the flat-plate airfoilil at a small angle of attack
in a slightly supersonic -stream with an attached shock wave. This flow
may be determined by the use of shock tables to obtain the result that
the surface pressure coefficients and hence the 1ift are proportiomnal
to the angle of attack to the two-thirds power times a function of X<.
Presumably, the preceding reasoning concerning the importance of the local
Mach number for two-dimensional wings will not be appreciably altered
for finite wings provided the tip effects are small. i

RESULTS AND APPLICATIONS

Aerodynamic characteristics.- For the symmetrical airfoils con-

sidered, p®’ is an even function of z and p® is an odd function
of z near z = 0, Thus, the only contribution to 1ift comes from p<.
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The 1ift coefficient is given approximately by

@

- L
CL = :]1/3 S\/ppa ax dy

[iy + 1)Mu? %

= = L(H,K) (29)

Ey + :l_)Mm2 -22]1/3

and Cj is proportional to the angle of attack as in other speed ranges.
Presumably then, the similarity rules presented herein are applicable
throughout the angle-of-attack range for which the 1ift coefficient varies
linearly with angle of attack. The zero-angle-of-attack pressure drag
due to thickness is given by

_ (t/c)2/3 1 £ oz
e E7 + 1)Mmﬁjl/3 Sfp > * Y

(t/c)°/3
E? + l)Mmz:\ 1/3

The drag due to angle of attack ACp 1is given by

Dp(H,K) (30)

ACp = o -1-pr ax dy
1/3 8
[(7 + 112 :E.I /3

2
= a
= 73 4D, (H,X)

E7 + 1)M,2

o1

E'y +1)M 2 81/3CL2AD(H,K) (31)
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1
or, since A|(7y + 1)Mm2-’c9 /3 st be kept constant,
0.2
L
ACp = —— AD,(H,K) (32)

This form is similar to the well-known result for incompressible flow.
The moment coefficient depends upon the 1lift distribution and

(o4

Cp = M(H,X) (33)
E7 + 1)M2 % /3

Keeping H and K constant means that the pressure distributions will
be similar in shape. Thus the position of the aerodynamic center 5%9

will depend only upon these two parameters, that is,

x% = X(E,K) (34)

From equations (29), (30), and (31), the expression for L/D is
(including the friction-drag coefficient CDf)

oL
a®AD; + (%)QDP + y + 1)M 2 g]l/Bch

] 1/3 . (8/c)/3 >
(7 + 1M2 £\ e 2D + t/c Dy + Cpp
l: :\ E7 + l)Mcoejl/3

It is interesting to note that expression (35) for L/D is similar to
that for supersonic flow although the functions involved are more
complicated.
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From equation (35), Cp for (L/D)pay is

E7 + l)Mmz:ll/3
2/3 Dp 5/3
(cw) . e) (t/c) (36)

and (L/D)max is

AN 1
(D)max 2% Aﬁ{Dp . E7 . l)M.f]lB _—CD_f_}

(t/c)5/3

Equation (37) shows that (L/D)max increases with decreasing thickness
at transonic speeds and is almost inversely proportional to t/c for
small values of the friction-drag coefficient for two-dimensional air-
foils at M, = 1.

(37)

Similarity rules may be formulated for camber by the same method
used for angle of attack.

The resulting forms for the aerodynamic coef-
ficients for wings having small an

gles of sweep and small camber ratios,
at low angles of attack, are
(t/0)?/3 (n/e)?
Cp, = Dp(H,K) + Dph(H,X)
°p B?’ + l)Iva?jl/3 E7 r1)MR2 T 1/3
a h/c
CL L(H,K) + Ln(H,K)
(7 + 1M,2 81/3 (7 + M2 & 1/3
40D = of 73 AD1(H,X) + a(n/c) ; £D3(H,K)
E7 + M2 %] Ey + 1M 2t
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Comparison with subsonic theory.- The 1ift predicted by subsonic
lifting-line theory is given by the formula

2nAq
2 + AVL - M2

CL =

or in terms of the transonic similarity parameters as

ona |(y + 1)M 2 -31/3

(o

E?’ + 1)My? 81/3

CL =

2

1/3 1-M,
2+AE7 + 1)Mw2-a / 573
o]

so that at subsonic speeds

2nH

2 + BK

Similar results are obtained for other aerodynamic coefficients determined
by subsonic wing theory.

L(H,K) =

Correlation studies.- The transonic similarity rules previously

a
presented (ref. 3) require that the paremeters H, K, and e be kept
c

constant for similar flows. Since the aerodynamic coefficients depend
upon three parsmeters, this form of the rules is inconvenient for corre-
lation work on lifting wings. The present derivation indicates that, for

low 1ift coefficients, the parsasmeter E%t need not be kept constant and
single charts may be prepared for each aerodynamic coefficient. For

1/3 ¢
example, from equation (29), [§7 + 1)Mim2 g] 7% may be plotted
2
-1
against Mes with lines of constant AE')’ + 1)Mw2]3c': 1/3

(7 + 102 32/3

to give a single chart for the 1ift of a family of wings of varying
aspect ratio and thickness ratio for the transonic Mach number range.
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CONCLUDING REMARKS

Similarity rules for the transonic flow about lifting wings have
been derived by considering the change in the flow field due to angle
of attack as a small perturbation to the nonlifting flow field. This
epproach has the advantage that the effects of angle of attack and air-
folil geometry are partially separated.

It was found that the 1lift coefficient is proportional to the angle
of attack as in other speed ranges. Other results are that the drag due
to 1ift is proportional to the square of the 1ift coefficient as in other
speed ranges and that the expression for the ratio of 1ift to drag is
very similar to that obtained at supersonic speeds. It was found that
the maximum velue of the lift-to-drag ratio is approximately inversely
proportional to the first power of the wing thickness ratio for cases
in which the skin-friction drag is negligible compared with the pressure
drag for two-dimensional airfoils at sonic velocity. It is believed that
for large-~aspect-ratio wings the 1lift coefficient is proportional to the
angle of attack when there are no large regions of near-sonic flow at the
surface and is proportional to the angle of attack to the two-thirds.
power times a function of the similarity parameter K% when large regions
of near-sonic flow exist at the surface.

The present form of the similarity rules permits each aerodynamic
coefficient for a family of wings of varying aspect ratio and thickness
ratio to be presented in a single chart for the transonic range.

Langliey Aeronautical Laboratory
National Advisory Committee for Aeronautics
Lengley Field, Va., March 2k, 1952
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APPENDIX A

SOME REMARKS CONCERNING THE APPLICATION OF TRANSONIC

SIMITARTTY RULES TO LIFTING WINGS

The similarity rules of references 1, 2, and 3 were derived for a
family of airfoils whose geometrical differences could be described in
terms of a single parameter (t/c in eq. (9)). However, the geometry of
a family of alrfoils with thickness at angle of attack depends upon the
two paremeters o and t/c. If such a family is to be described by a
single parameter, o and t/c cannot be independent. The proper rela~

tionship for thin airfoils at small angles of attack is ;EL = Constant.
c

The solution for the flow past a 1lifting wing with a one-parameter bound-
ary condition is similar to the form for ¢t and may be expressed as

2/3
- (t/c) XYz a
' [(7 + 1] 1/3 (c’%’b’H’K’t7 C)

where the parsmeter E%; has been included explicitly since it appears
c

explicitly in the body shape (eq. (9)). The expression for the lift

coefficient is

(/e
Cr, [7 . l)M] 1/3 ( ) :'.57—)

from which the slope of the lift curve at zero 1lift has the form

R R T

Equation (29) is in agreement with this form with

oLy
3(€%t) a=0

a=0

L(H,K) =
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APPENDIX B

DERIVATION OF TRANSONIC APPROXIMATION FOR PRANDTL-MEYER FLOW

The exact equation for Prandtl-Meyer flow mey be written

6 = \/1-*—-]5 tm'l<\/z;i‘- VM2 - 1) - tan~l M2 - 1 (B1)

y -1 7+ 1

where 6 is the expansion angle required to accelerate the flow from
My, =1 to M. The transonic approximation for Prandtl-Meyer flow is
derived by expanding equation (B1) in a Taylor series about the point
M=M, for M and M, both near 1. With \M2 - 1 replaced by B,
the Taylor series is -

_a \2/:2
6(B) ="6(Bw) + (B - Boo)(%g')ﬁ 5 o 8 Q:Bw) (2[32) *
-8, B=B,,
e -—swf’/d?’e) . (B2)
3 \dB3 B

The quantity 6(B) - 6(Be) 1is the flow deflection from the stream

direction and will be denoted by &. The first three terms of equa-
tion (B2) are all of the order B3 and to this order

%(7 + l)M“?S =p3 -3 (B3)

In the small-disturbance approximation P « @y which is now expessed
in terms of B and B,. Inserting @ = U(x + @#) into equation (3) gives

2

E;E =1 - Z—é—i Mm2(2¢x + P52 + By + ¢22)

0

o

21 - (7 - 1)M28,
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2, .2
Mo = 2T +W2R‘Mm2[l+(7+l)¢;}

al

or

B2 = B2 + (7 + 1)M.2, (BL)

Combining equations (B3) and (B4) yields

. 2/3
e 28+ B2 do oo™}
52/3 5 l: 5)3/2 §l2/3
= Ey +) l)}dme':llﬁ{-K + (K ) + 5

and, since P « ¢x: the approximate expression for the pressure coef-

ficient for Prandtl-Meyer flow for transonic speeds may be expressed in
the form

52/3
P « g(KB) -
“ o+ omd] 13
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